Atomistry » Zinc » PDB 5thi-5tt8 » 5tmn
Atomistry »
  Zinc »
    PDB 5thi-5tt8 »
      5tmn »

Zinc in PDB 5tmn: Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues

Enzymatic activity of Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues

All present enzymatic activity of Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues:
3.4.24.27;

Protein crystallography data

The structure of Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues, PDB code: 5tmn was solved by H.M.Holden, D.E.Tronrud, A.F.Monzingo, L.H.Weaver, B.W.Matthews, with X-Ray Crystallography technique. A brief refinement statistics is given in the table below:

Resolution Low / High (Å) N/A / 1.60
Space group P 61 2 2
Cell size a, b, c (Å), α, β, γ (°) 94.100, 94.100, 131.400, 90.00, 90.00, 120.00
R / Rfree (%) n/a / n/a

Other elements in 5tmn:

The structure of Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues also contains other interesting chemical elements:

Calcium (Ca) 4 atoms

Zinc Binding Sites:

The binding sites of Zinc atom in the Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues (pdb code 5tmn). This binding sites where shown within 5.0 Angstroms radius around Zinc atom.
In total only one binding site of Zinc was determined in the Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues, PDB code: 5tmn:

Zinc binding site 1 out of 1 in 5tmn

Go back to Zinc Binding Sites List in 5tmn
Zinc binding site 1 out of 1 in the Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues


Mono view


Stereo pair view

A full contact list of Zinc with other atoms in the Zn binding site number 1 of Slow-and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding. Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues within 5.0Å range:
probe atom residue distance (Å) B Occ
E:Zn322

b:9.5
occ:1.00
NE2 E:HIS142 2.0 12.1 1.0
OE1 E:GLU166 2.1 11.2 1.0
O21 E:0PJ317 2.1 9.8 1.0
NE2 E:HIS146 2.1 9.3 1.0
CD E:GLU166 2.8 9.2 1.0
OE2 E:GLU166 2.9 11.2 1.0
CE1 E:HIS146 2.9 8.3 1.0
O11 E:0PJ317 3.0 10.6 1.0
CE1 E:HIS142 3.0 7.7 1.0
P E:0PJ317 3.1 9.7 1.0
CD2 E:HIS142 3.1 8.3 1.0
CD2 E:HIS146 3.2 10.6 1.0
OH E:TYR157 3.8 10.9 1.0
N1 E:0PJ317 4.0 2.6 1.0
NE2 E:HIS231 4.1 7.5 1.0
ND1 E:HIS146 4.1 10.2 1.0
ND1 E:HIS142 4.2 6.2 1.0
CG E:HIS142 4.2 8.2 1.0
CA E:0PJ317 4.2 13.4 1.0
CG E:GLU166 4.3 6.1 1.0
CG E:HIS146 4.3 8.4 1.0
CB E:SER169 4.5 3.7 1.0
C E:0PJ317 4.5 3.8 1.0
N E:0PJ317 4.6 10.7 1.0
CD2 E:HIS231 4.6 10.9 1.0
C9 E:0PJ317 4.6 19.8 1.0
O E:0PJ317 4.7 9.2 1.0
O E:HOH492 4.8 9.6 1.0
OG E:SER169 4.8 8.8 1.0
CZ E:TYR157 4.8 11.9 1.0
OE1 E:GLU143 4.9 10.8 1.0
CA E:GLU166 4.9 6.4 1.0
CE2 E:TYR157 4.9 16.7 1.0

Reference:

H.M.Holden, D.E.Tronrud, A.F.Monzingo, L.H.Weaver, B.W.Matthews. Slow- and Fast-Binding Inhibitors of Thermolysin Display Different Modes of Binding: Crystallographic Analysis of Extended Phosphonamidate Transition-State Analogues. Biochemistry V. 26 8542 1987.
ISSN: ISSN 0006-2960
PubMed: 3442675
DOI: 10.1021/BI00400A008
Page generated: Mon Oct 28 08:40:19 2024

Last articles

Mn in 4WCE
Mn in 4WF9
Mn in 4WIU
Mn in 4WIE
Mn in 4WFO
Mn in 4WFA
Mn in 4UXA
Mn in 4W8Y
Mn in 4W9S
Mn in 4V15
© Copyright 2008-2020 by atomistry.com
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy